最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
当前位置: 首页 - 科技 - 知识百科 - 正文

Python的迭代器和生成器使用实例

来源:懂视网 责编:小采 时间:2020-11-27 14:31:36
文档

Python的迭代器和生成器使用实例

Python的迭代器和生成器使用实例:一、迭代器Iterators 迭代器仅是一容器对象,它实现了迭代器协议。它有两个基本方法: 1)next方法 返回容器的下一个元素 2)__iter__方法 返回迭代器自身 迭代器可使用内建的iter方法创建,见例子: 代码如下: >>> i = iter('abc') >>>
推荐度:
导读Python的迭代器和生成器使用实例:一、迭代器Iterators 迭代器仅是一容器对象,它实现了迭代器协议。它有两个基本方法: 1)next方法 返回容器的下一个元素 2)__iter__方法 返回迭代器自身 迭代器可使用内建的iter方法创建,见例子: 代码如下: >>> i = iter('abc') >>>

一、迭代器Iterators

迭代器仅是一容器对象,它实现了迭代器协议。它有两个基本方法:

1)next方法
返回容器的下一个元素

2)__iter__方法
返回迭代器自身

迭代器可使用内建的iter方法创建,见例子:
代码如下:


>>> i = iter('abc')
>>> i.next()
'a'
>>> i.next()
'b'
>>> i.next()
'c'
>>> i.next()
Traceback (most recent call last):
File "", line 1, in
StopIteration:

class MyIterator(object):
def __init__(self, step):
self.step = step
def next(self):
"""Returns the next element."""
if self.step==0:
raise StopIteration
self.step-=1
return self.step
def __iter__(self):
"""Returns the iterator itself."""
return self
for el in MyIterator(4):
print el
--------------------


结果:
代码如下:


3
2
1
0

二、生成器Generators

从Python2.2起,生成器提供了一种简洁的方式帮助返回列表元素的函数来完成简单和有效的代码。
它基于yield指令,允许停止函数并立即返回结果。

此函数保存其执行上下文,如果需要,可立即继续执行。

例如Fibonacci函数:
代码如下:


def fibonacci():
a,b=0,1
while True:
yield b
a,b = b, a+b
fib=fibonacci()
print fib.next()
print fib.next()
print fib.next()
print [fib.next() for i in range(10)]
--------------------


结果:
代码如下:


1
1
2
[3, 5, 8, 13, 21, 34, 55, 89, 144, 233]

PEP Python Enhancement Proposal Python增强建议

tokenize模块
代码如下:


>>> import tokenize
>>> reader = open('c:/temp/py1.py').next
>>> tokens=tokenize.generate_tokens(reader)
>>> tokens.next()
(1, 'class', (1, 0), (1, 5), 'class MyIterator(object):/n')
>>> tokens.next()
(1, 'MyIterator', (1, 6), (1, 16), 'class MyIterator(object):/n')
>>> tokens.next()
(51, '(', (1, 16), (1, 17), 'class MyIterator(object):/n')


例子:
代码如下:


def power(values):
for value in values:
print 'powering %s' %value
yield value
def adder(values):
for value in values:
print 'adding to %s' %value
if value%2==0:
yield value+3
else:
yield value+2
elements = [1,4,7,9,12,19]
res = adder(power(elements))
print res.next()
print res.next()
--------------------


结果:
代码如下:


powering 1
adding to 1
3
powering 4
adding to 4
7


保持代码简单,而不是数据。
注意:宁可有大量简单的可迭代函数,也不要一个复杂的一次只计算出一个值的函数。

例子:
代码如下:


def psychologist():
print 'Please tell me your problems'
while True:
answer = (yield)
if answer is not None:
if answer.endswith('?'):
print ("Don't ask yourself too much questions")
elif 'good' in answer:
print "A that's good, go on"
elif 'bad' in answer:
print "Don't be so negative"
free = psychologist()
print free.next()
print free.send('I feel bad')
print free.send("Why I shouldn't ?")
print free.send("ok then i should find what is good for me")
--------------------


结果:
代码如下:


Please tell me your problems
None
Don't be so negative
None
Don't ask yourself too much questions
None
A that's good, go on
None

声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。TEL:177 7030 7066 E-MAIL:11247931@qq.com

文档

Python的迭代器和生成器使用实例

Python的迭代器和生成器使用实例:一、迭代器Iterators 迭代器仅是一容器对象,它实现了迭代器协议。它有两个基本方法: 1)next方法 返回容器的下一个元素 2)__iter__方法 返回迭代器自身 迭代器可使用内建的iter方法创建,见例子: 代码如下: >>> i = iter('abc') >>>
推荐度:
标签: 生成器 案例 实例
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top