最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
当前位置: 首页 - 科技 - 知识百科 - 正文

如何在Python中编写并发程序

来源:懂视网 责编:小采 时间:2020-11-27 14:35:20
文档

如何在Python中编写并发程序

如何在Python中编写并发程序:GIL 在Python中,由于历史原因(GIL),使得Python中多线程的效果非常不理想.GIL使得任何时刻Python只能利用一个CPU核,并且它的调度算法简单粗暴:多线程中,让每个线程运行一段时间t,然后强行挂起该线程,继而去运行其他线程,如此周而复始,直到所有线程结束.
推荐度:
导读如何在Python中编写并发程序:GIL 在Python中,由于历史原因(GIL),使得Python中多线程的效果非常不理想.GIL使得任何时刻Python只能利用一个CPU核,并且它的调度算法简单粗暴:多线程中,让每个线程运行一段时间t,然后强行挂起该线程,继而去运行其他线程,如此周而复始,直到所有线程结束.

GIL

在Python中,由于历史原因(GIL),使得Python中多线程的效果非常不理想.GIL使得任何时刻Python只能利用一个CPU核,并且它的调度算法简单粗暴:多线程中,让每个线程运行一段时间t,然后强行挂起该线程,继而去运行其他线程,如此周而复始,直到所有线程结束.

这使得无法有效利用计算机系统中的"局部性",频繁的线程切换也对缓存不是很友好,造成资源的浪费.

据说Python官方曾经实现了一个去除GIL的Python解释器,但是其效果还不如有GIL的解释器,遂放弃.后来Python官方推出了"利用多进程替代多线程"的方案,在Python3中也有concurrent.futures这样的包,让我们的程序编写可以做到"简单和性能兼得".

多进程/多线程+Queue

一般来说,在Python中编写并发程序的经验是:计算密集型任务使用多进程,IO密集型任务使用多进程或者多线程.另外,因为涉及到资源共享,所以需要同步锁等一系列麻烦的步骤,代码编写不直观.另外一种好的思路是利用多进程/多线程+Queue的方法,可以避免加锁这样麻烦低效的方式.

现在在Python2中利用Queue+多进程的方法来处理一个IO密集型任务.

假设现在需要下载多个网页内容并进行解析,单进程的方式效率很低,所以使用多进程/多线程势在必行.
我们可以先初始化一个tasks队列,里面将要存储的是一系列dest_url,同时开启4个进程向tasks中取任务然后执行,处理结果存储在一个results队列中,最后对results中的结果进行解析.最后关闭两个队列.

下面是一些主要的逻辑代码.

# -*- coding:utf-8 -*-

#IO密集型任务
#多个进程同时下载多个网页
#利用Queue+多进程
#由于是IO密集型,所以同样可以利用threading模块

import multiprocessing

def main():
 tasks = multiprocessing.JoinableQueue()
 results = multiprocessing.Queue()
 cpu_count = multiprocessing.cpu_count() #进程数目==CPU核数目

 create_process(tasks, results, cpu_count) #主进程马上创建一系列进程,但是由于阻塞队列tasks开始为空,副进程全部被阻塞
 add_tasks(tasks) #开始往tasks中添加任务
 parse(tasks, results) #最后主进程等待其他线程处理完成结果


def create_process(tasks, results, cpu_count):
 for _ in range(cpu_count):
 p = multiprocessing.Process(target=_worker, args=(tasks, results)) #根据_worker创建对应的进程
 p.daemon = True #让所有进程可以随主进程结束而结束
 p.start() #启动

def _worker(tasks, results):
 while True: #因为前面所有线程都设置了daemon=True,故不会无限循环
 try:
 task = tasks.get() #如果tasks中没有任务,则阻塞
 result = _download(task)
 results.put(result) #some exceptions do not handled
 finally:
 tasks.task_done()

def add_tasks(tasks):
 for url in get_urls(): #get_urls() return a urls_list
 tasks.put(url)

def parse(tasks, results):
 try: 
 tasks.join()
 except KeyboardInterrupt as err:
 print "Tasks has been stopped!"
 print err

 while not results.empty():
 _parse(results)



if __name__ == '__main__':
 main()

利用Python3中的concurrent.futures包

在Python3中可以利用concurrent.futures包,编写更加简单易用的多线程/多进程代码.其使用感觉和Java的concurrent框架很相似(借鉴?)
比如下面的简单代码示例

def handler():
 futures = set()

 with concurrent.futures.ProcessPoolExecutor(max_workers=cpu_count) as executor:
 for task in get_task(tasks):
 future = executor.submit(task)
 futures.add(future)

def wait_for(futures):
 try:
 for future in concurrent.futures.as_completed(futures):
 err = futures.exception()
 if not err:
 result = future.result()
 else:
 raise err
 except KeyboardInterrupt as e:
 for future in futures:
 future.cancel()
 print "Task has been canceled!"
 print e
 return result

总结

要是一些大型Python项目也这般编写,那么效率也太低了.在Python中有许多已有的框架使用,使用它们起来更加高效.
但是自己的一些"小打小闹"的程序这样来编写还是不错的.:)

声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。TEL:177 7030 7066 E-MAIL:11247931@qq.com

文档

如何在Python中编写并发程序

如何在Python中编写并发程序:GIL 在Python中,由于历史原因(GIL),使得Python中多线程的效果非常不理想.GIL使得任何时刻Python只能利用一个CPU核,并且它的调度算法简单粗暴:多线程中,让每个线程运行一段时间t,然后强行挂起该线程,继而去运行其他线程,如此周而复始,直到所有线程结束.
推荐度:
标签: 如何 怎样 进程
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top