最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
当前位置: 首页 - 科技 - 知识百科 - 正文

Python生成器的介绍与使用

来源:懂视网 责编:小采 时间:2020-11-27 14:13:52
文档

Python生成器的介绍与使用

Python生成器的介绍与使用:python中的generator保存的是算法,真正需要计算出值的时候才会去往下计算出值。它是一种惰性计算(lazy evaluation)。要创建一个generator有两种方式。第一种方法:把一个列表生成式的[]改成(),就创建了一个generator:>>>
推荐度:
导读Python生成器的介绍与使用:python中的generator保存的是算法,真正需要计算出值的时候才会去往下计算出值。它是一种惰性计算(lazy evaluation)。要创建一个generator有两种方式。第一种方法:把一个列表生成式的[]改成(),就创建了一个generator:>>>

python中的generator保存的是算法,真正需要计算出值的时候才会去往下计算出值。它是一种惰性计算(lazy evaluation)。

要创建一个generator有两种方式。

第一种方法:把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]>>> g = (x * x for x in range(10)) # 注意把[]改成()后,不是生成一个tuple,而是生成一个generator>>> g<generator object <genexpr> at 0x1022ef630>

第二种方式:在函数中使用yield关键字,函数就变成了一个generator。

函数里有了yield后,执行到yield就会停住,当需要再往下算时才会再往下算。所以生成器函数即使是有无限循环也没关系,它需要算到多少就会算多少,不需要就不往下算。

def fib():
a, b = 0, 1
while True:
yield a
a, b = b, a + b
f = fib()
print f, next(f), next(f), next(f)
# <generator object fib at 0x7f89769d1fa0> 0 1 1

如上例,第一次输出f,它就是一个generator,之后每次next,它就执行到yield a。

当然其实平常很少用到next(),我们直接用for循环就可以遍历一个generator,其实for循环的内部实现就是不停调用next()。

生成器可以避免不必要的计算,带来性能上的提升;而且会节约空间,可以实现无限循环(无穷大的)的数据结构。

生成器语法
生成器表达式: 通列表解析语法,只不过把列表解析的[]换成()
生成器表达式能做的事情列表解析基本都能处理,只不过在需要处理的序列比较大时,列表解析比较费内存。

生成器函数: 在函数中如果出现了yield关键字,那么该函数就不再是普通函数,而是生成器函数。

在Python中,yield就是这样的一个生成器。

yield 生成器的运行机制:

当你问生成器要一个数时,生成器会执行,直至出现 yield 语句,生成器把 yield 的参数给你,之后生成器就不会往下继续运行。 当你问他要下一个数时,他会从上次的状态。开始运行,直至出现yield语句,把参数给你,之后停下。如此反复 直至退出函数。

yield的使用:

在Python中,当你定义一个函数,使用了yield关键字时,这个函数就是一个生成器,它的执行会和其他普通的函数有很多不同,函数返回的是一个对象,而不是你平常 所用return语句那样,能得到结果值。如果想取得值,那得调用next()函数

下面以斐波拉契为例:

#coding:utf8
def fib(max): #10
 n, a, b = 0, 0, 1
 while n < max: #n<10
 #print(b)
 yield b
 a, b = b, a + b

 n += 1
 return 

f = fib(10)
for i in f:
 print f

从上面的运行机制描述中,可以获知,程序运行到yield这行时,就不会继续往下执行。而是返回一个包含当前函数所有参数的状态的iterator对象。目的就是为了第二次被调用时,能够访问到函数所有的参数值都是第一次访问时的值,而不是重新赋值。

程序第一次调用时:

def fib(max): #10
 n, a, b = 0, 0, 1
 while n < max: #n<10
 #print(b)
 yield b #这时a,b值分别为0,1,当然,程序也在执行到这时,返回
 a, b = b, a + b

程序第二次调用时:

从前面可知,第一次调用时,a,b=0,0,那么,我们第二次调用时(其实就是调用第一次返回的iterator对象的next()方法),程序跳到yield语句处,

执行a,b = b, a+b语句,此时值变为:a,b = 0, (0+1) => a,b = 0, 1

程序继续while循环,当然,再一次碰到了yield a 语句,也是像第一次那样,保存函数所有参数的状态,返回一个包含这些参数状态的iterator对象。

等待第三次的调用....

通过上面的分析,可以一次类推的展示了yield的详细运行过程了!

通过使用生成器的语法,可以免去写迭代器类的繁琐代码,如,上面的例子使用迭代类来实现,代码如下:

#coding:UTF8

class Fib: 
 def __init__(self, max): 
 self.max = max
 print self.max
 def __iter__(self): 
 self.a = 0 
 self.b = 1 
 self.n = 0 
 return self 
 def next(self): 
 fib = self.n 
 if fib >= self.max: 
 raise StopIteration 
 self.a, self.b = self.b, self.a + self.b 
 self.n += 1
 return self.a
 
f = Fib(10)
for i in f:
 print i

yield 与 return

在一个生成器中,如果没有return,则默认执行到函数完毕时返回StopIteration;

如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

如果在return后返回一个值,会直接报错,生成器没有办法使用return来返回值。

生成器支持的方法(借鉴别人的例子,感觉蛮好的)

 close(...)
 | close() -> raise GeneratorExit inside generator.
 | 
 | next(...)
 | x.next() -> the next value, or raise StopIteration
 | 
 | send(...)
 | send(arg) -> send 'arg' into generator,
 | return next yielded value or raise StopIteration.
 | 
 | throw(...)
 | throw(typ[,val[,tb]]) -> raise exception in generator,
 | return next yielded value or raise StopIteration.

close()

手动关闭生成器函数,后面的调用会直接返回StopIteration异常。

#coding:UTF8

def fib():
 yield 1
 yield 2
 yield 3

f = fib()
print f.next()
f.close()
print f.next()

send()

生成器函数最大的特点是可以接受外部传入的一个变量,并根据变量内容计算结果后返回。
这是生成器函数最难理解的地方,也是最重要的地方,

def gen():
 value=0
 while True:
 receive=yield value
 if receive=='e':
 break
 value = 'got: %s' % receive
 
g=gen()
print(g.send(None)) 
print(g.send('aaa'))
print(g.send(3))
print(g.send('e'))

执行流程:

  1. 通过g.send(None)或者next(g)可以启动生成器函数,并执行到第一个yield语句结束的位置。此时,执行完了yield语句,但是没有给receive赋值。yield value会输出初始值0注意:在启动生成器函数时只能send(None),如果试图输入其它的值都会得到错误提示信息。

  2. 通过g.send(‘aaa’),会传入aaa,并赋值给receive,然后计算出value的值,并回到while头部,执行yield value语句有停止。此时yield value会输出”got: aaa”,然后挂起。

  3. 通过g.send(3),会重复第2步,最后输出结果为”got: 3″

  4. 当我们g.send(‘e’)时,程序会执行break然后推出循环,最后整个函数执行完毕,所以会得到StopIteration异常。

最后的执行结果如下:

0
got: aaa
got: 3
Traceback (most recent call last):
 File "1.py", line 15, in <module>
 print(g.send('e'))
StopIteration

 

throw()

用来向生成器函数送入一个异常,可以结束系统定义的异常,或者自定义的异常。
throw()后直接跑出异常并结束程序,或者消耗掉一个yield,或者在没有下一个yield的时候直接进行到程序的结尾。

def gen():
 while True: 
 try:
 yield 'normal value'
 yield 'normal value 2'
 print('here')
 except ValueError:
 print('we got ValueError here')
 except TypeError:
 break
 
g=gen()
print(next(g))
print(g.throw(ValueError))
print(next(g))
print(g.throw(TypeError))

执行流程:

  1. print(next(g)):会输出normal value,并停留在yield ‘normal value 2’之前。

  2. 由于执行了g.throw(ValueError),所以会跳过所有后续的try语句,也就是说yield ‘normal value 2’不会被执行,然后进入到except语句,打印出we got ValueError here。然后再次进入到while语句部分,消耗一个yield,所以会输出normal value。

  3. print(next(g)),会执行yield ‘normal value 2’语句,并停留在执行完该语句后的位置。

  4. g.throw(TypeError):会跳出try语句,从而print(‘here’)不会被执行,然后执行break语句,跳出while循环,然后到达程序结尾,所以跑出StopIteration异常。

  

声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。TEL:177 7030 7066 E-MAIL:11247931@qq.com

文档

Python生成器的介绍与使用

Python生成器的介绍与使用:python中的generator保存的是算法,真正需要计算出值的时候才会去往下计算出值。它是一种惰性计算(lazy evaluation)。要创建一个generator有两种方式。第一种方法:把一个列表生成式的[]改成(),就创建了一个generator:>>>
推荐度:
标签: 使用 介绍 和使用
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top