最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
当前位置: 首页 - 科技 - 知识百科 - 正文

MYSQL更新优化实录

来源:懂视网 责编:小采 时间:2020-11-09 20:56:27
文档

MYSQL更新优化实录

MYSQL更新优化实录:引言 今天(August 5, 2015 5:34 PM)在给数据库中一张表的结构做一次调整,添加了几个字段,后面对之前的数据进行刷新,刷新的内容是:对其中的一个已有字段url进行匹配,然后更新新加的字段type和typeid。后来就写了个shell脚本来刷数据,结果运行s
推荐度:
导读MYSQL更新优化实录:引言 今天(August 5, 2015 5:34 PM)在给数据库中一张表的结构做一次调整,添加了几个字段,后面对之前的数据进行刷新,刷新的内容是:对其中的一个已有字段url进行匹配,然后更新新加的字段type和typeid。后来就写了个shell脚本来刷数据,结果运行s

引言

今天(August 5, 2015 5:34 PM)在给数据库中一张表的结构做一次调整,添加了几个字段,后面对之前的数据进行刷新,刷新的内容是:对其中的一个已有字段url进行匹配,然后更新新加的字段type和typeid。后来就写了个shell脚本来刷数据,结果运行shell脚本后我就懵了,怎么这么慢~~~

情景再现

CREATE TABLE `fuckSpeed` (
 `uin` bigint(20) unsigned NOT NULL DEFAULT 0,
 `id` int(11) unsigned NOT NULL DEFAULT 0,
 `url` varchar(255) NOT NULL DEFAULT '',
 `type` int(11) unsigned NOT NULL DEFAULT 0,
 `typeid` varchar(64) NOT NULL DEFAULT '',
 ......
 KEY `uin_id` (`uin`,`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

表结构大概是上面这样的(省略了好多字段),表中只有一个联合索引uin_id,而我在更新的时候是下面的思路:

首先根据一个id范围获取到一定数量的数据

select id,url from funkSpeed where id>=101 and id<=200;

遍历所有的数据,对每一条数据进行更新
#首先对数据进行处理,匹配获取type和typeid

update fuckSpeed set type=[type],typeid=[typeid] where id=[id]

按照上面的思路搞了之后,发现更新特别的慢,平均每秒钟3~5个左右,我也是醉了,我看看要更新的数据,总共有32w+条,这样更新下来大概需要24h+,也就是1天还要多,额~~哭了,想想肯定是哪里出问题了。

发现问题

首先我想到的是是不是因为只有一个进程在更新,导致很慢,我启动了5个进程,将id分段了,就像下面这样

./update_url.sh 0 10000 &
./update_url.sh 10000 20001 &
./update_url.sh 20001 30001 &
./update_url.sh 30002 40002 &
./update_url.sh 40003 50003 &

运行之后发现还是那样,速度没有提升多少,还是每秒钟更新3~5个左右,想想也是啊,时间不可能花费在插入数据之前的那些步骤(匹配、组装sql语句、。。),应该是插入的时候有问题

再来看看我的sql语句select id,url from funkSpeed where id>=101 and id<=200;,这里,试着在命令行执行了下,结果如下

mysql> select id,url from funkSpeed where id>=0 and id<=200;
Empty set (0.18 sec)

竟然花了0.18秒,这个时候我猜恍然大悟,联合索引我没有使用到,联合索引生效的条件是——必须要有左边的字段,用explain验证下,果然是这样:

mysql> explain id,url from funkSpeed where id>=0 and id<=200;
+-------------+------+---------------+------+---------+------+--------+-------------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------------+------+---------------+------+---------+------+--------+-------------+
| funkSpeed | ALL | NULL | NULL | NULL | NULL | 324746 | Using where |
+-------------+------+---------------+------+---------+------+--------+-------------+
1 row in set (0.00 sec)

然后使用联合索引:

mysql> select uin,id from funkSpeed where uin=10023 and id=162;
+------------+----------+
| uin | id |
+------------+----------+
| 10023 | 162 |
+------------+----------+
1 row in set (0.00 sec)

mysql> explain select uin,id from funkSpeed where uin=10023 and id=162;
+-------------+------+---------------+----------+---------+-------------+------+-------------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------------+------+---------------+----------+---------+-------------+------+-------------+
| funkSpeed | ref | uin_id | uin_id | 12 | const,const | 4 | Using index |
+-------------+------+---------------+----------+---------+-------------+------+-------------+
1 row in set (0.00 sec)

可以看到几乎是秒查,这个时候基本可以断定问题是出现在索引这个地方了

我select的时候次数比较少,每两个select之间id相差10000,所以这里可以忽略掉,而且这里没办法优化,除非在id上面添加索引。

问题发生在update fuckSpeed set type=[type],typeid=[typeid] where id=[id],这里在更新的时候也是会用到查询的,我的mysql版本是5.5,不能explain update,不然肯定可以验证我所说的,这里要更新32w+条数据,每条数据都会去更新,每条数据0.2s左右,这太吓人了~~

解决问题

问题找到了,解决起来就容易多了~~

select的时候加了一个字段uin,改为下面这样select uin,id,url from funkSpeed where id>=101 and id<=200;,然后更新的时候使用update fuckSpeed set type=[type],typeid=[typeid] where uin=[uin] id=[id],这样一来索引就是用上了。

三下五除二改好了代码,试着启动了一个进程,看看效果如何,果然,效果提升的不是一点点,平均30+次/s,这样大概3个小时左右就可以完成所有的更新了。

总结Mysql语句级优化:

1.   性能查的读语句,在innodb中统计行数,建议另外弄一张统计表,采用myisam,定期做统计.一般的对统计的数据不会要求太精准的情况下适用。

2.   尽量不要在数据库中做运算。

3.   避免负向查询和%前缀模糊查询。

4.   不在索引列做运算或者使用函数。

5.   不要在生产环境程序中使用select * from 的形式查询数据。只查询需要使用的列。

6.   查询尽可能使用limit减少返回的行数,减少数据传输时间和带宽浪费。

7.   where子句尽可能对查询列使用函数,因为对查询列使用函数用不到索引。

8.   避免隐式类型转换,例如字符型一定要用'',数字型一定不要使用''。

9.   所有的SQL关键词用大写,养成良好的习惯,避免SQL语句重复编译造成系统资源的浪费。

10. 联表查询的时候,记得把小结果集放在前面,遵循小结果集驱动大结果集的原则。

11. 开启慢查询,定期用explain优化慢查询中的SQL语句。

您可能感兴趣的文章:

  • MySQL下的RAND()优化案例分析
  • 修改Innodb的数据页大小以优化MySQL的方法
  • 探究MySQL优化器对索引和JOIN顺序的选择
  • 大幅优化MySQL查询性能的奇技淫巧
  • 12个优化MySQL的技巧小整理
  • 运维角度浅谈MySQL数据库优化(李振良)
  • MySQL 5.5.x my.cnf参数配置优化详解
  • 详解MySQL性能优化(一)
  • 详解Mysql多表联合查询效率分析及优化
  • MySql更新优化策略
  • 声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。TEL:177 7030 7066 E-MAIL:11247931@qq.com

    文档

    MYSQL更新优化实录

    MYSQL更新优化实录:引言 今天(August 5, 2015 5:34 PM)在给数据库中一张表的结构做一次调整,添加了几个字段,后面对之前的数据进行刷新,刷新的内容是:对其中的一个已有字段url进行匹配,然后更新新加的字段type和typeid。后来就写了个shell脚本来刷数据,结果运行s
    推荐度:
    • 热门焦点

    最新推荐

    猜你喜欢

    热门推荐

    专题
    Top