最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
当前位置: 首页 - 科技 - 知识百科 - 正文

OpenCV中feature2D学习SIFT和SURF算子实现特征点提取与匹配

来源:懂视网 责编:小采 时间:2020-11-09 15:29:04
文档

OpenCV中feature2D学习SIFT和SURF算子实现特征点提取与匹配

OpenCV中feature2D学习SIFT和SURF算子实现特征点提取与匹配:概述 之前的文章SURF和SIFT算子实现特征点检测简单地讲了利用SIFT和SURF算子检测特征点,在检测的基础上可以使用SIFT和SURF算子对特征点进行特征提取并使用匹配函数进行特征点的匹配。具体实现是首先采用SurfFeatureDetector检测特征点,再使用Surf
推荐度:
导读OpenCV中feature2D学习SIFT和SURF算子实现特征点提取与匹配:概述 之前的文章SURF和SIFT算子实现特征点检测简单地讲了利用SIFT和SURF算子检测特征点,在检测的基础上可以使用SIFT和SURF算子对特征点进行特征提取并使用匹配函数进行特征点的匹配。具体实现是首先采用SurfFeatureDetector检测特征点,再使用Surf

概述 之前的文章SURF和SIFT算子实现特征点检测简单地讲了利用SIFT和SURF算子检测特征点,在检测的基础上可以使用SIFT和SURF算子对特征点进行特征提取并使用匹配函数进行特征点的匹配。具体实现是首先采用SurfFeatureDetector检测特征点,再使用SurfDescripto

概述

之前的文章SURF和SIFT算子实现特征点检测简单地讲了利用SIFT和SURF算子检测特征点,在检测的基础上可以使用SIFT和SURF算子对特征点进行特征提取并使用匹配函数进行特征点的匹配。具体实现是首先采用SurfFeatureDetector检测特征点,再使用SurfDescriptorExtractor计算特征点的特征向量,最后采用BruteForceMatcher暴力匹配法或者FlannBasedMatcher选择性匹配法(二者的不同)来进行特征点匹配。

实验所用环境是opencv2.4.0+vs2008+win7,需要注意opencv2.4.X版本中SurfFeatureDetector是包含在opencv2/nonfree/features2d.hpp中,BruteForceMatcher是包含在opencv2/legacy/legacy.hpp中,FlannBasedMatcher是包含在opencv2/features2d/features2d.hpp中。

BruteForce匹配法

首先使用BruteForceMatcher暴力匹配法,代码如下:

/**
* @采用SURF算子检测特征点,对特征点进行特征提取,并使用BruteForce匹配法进行特征点的匹配
* @SurfFeatureDetector + SurfDescriptorExtractor + BruteForceMatcher
* @author holybin
*/

#include 
#include 
#include "opencv2/core/core.hpp"
#include "opencv2/nonfree/features2d.hpp"	//SurfFeatureDetector实际在该头文件中
#include "opencv2/legacy/legacy.hpp"	//BruteForceMatcher实际在该头文件中
//#include "opencv2/features2d/features2d.hpp"	//FlannBasedMatcher实际在该头文件中
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
using namespace std;

int main( int argc, char** argv )
{
	Mat src_1 = imread( "D:\\opencv_pic\\cat3d120.jpg", CV_LOAD_IMAGE_GRAYSCALE );
	Mat src_2 = imread( "D:\\opencv_pic\\cat0.jpg", CV_LOAD_IMAGE_GRAYSCALE );

	if( !src_1.data || !src_2.data )
	{ 
	cout<< " --(!) Error reading images "< keypoints_1, keypoints_2;
	detector.detect( src_1, keypoints_1 );
	detector.detect( src_2, keypoints_2 );
	cout<<"img1--number of keypoints: "< > matcher;
	vector< DMatch > matches;
	matcher.match( descriptors_1, descriptors_2, matches );
	cout<<"number of matches: "<

实验结果:



FLANN匹配法

使用暴力匹配的结果不怎么好,下面使用FlannBasedMatcher进行特征匹配,只保留好的特征匹配点,代码如下:

/**
* @采用SURF算子检测特征点,对特征点进行特征提取,并使用FLANN匹配法进行特征点的匹配
* @SurfFeatureDetector + SurfDescriptorExtractor + FlannBasedMatcher
* @author holybin
*/

#include 
#include 
#include "opencv2/core/core.hpp"
#include "opencv2/nonfree/features2d.hpp"	//SurfFeatureDetector实际在该头文件中
//#include "opencv2/legacy/legacy.hpp"	//BruteForceMatcher实际在该头文件中
#include "opencv2/features2d/features2d.hpp"	//FlannBasedMatcher实际在该头文件中
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
using namespace std;

int main( int argc, char** argv )
{
	Mat src_1 = imread( "D:\\opencv_pic\\cat3d120.jpg", CV_LOAD_IMAGE_GRAYSCALE );
	Mat src_2 = imread( "D:\\opencv_pic\\cat0.jpg", CV_LOAD_IMAGE_GRAYSCALE );

	if( !src_1.data || !src_2.data )
	{ 
	cout<< " --(!) Error reading images "< keypoints_1, keypoints_2;
	detector.detect( src_1, keypoints_1 );
	detector.detect( src_2, keypoints_2 );
	cout<<"img1--number of keypoints: "< allMatches;
	matcher.match( descriptors_1, descriptors_2, allMatches );
	cout<<"number of matches before filtering: "< maxDist )
	maxDist = dist;
	}
	printf("	max dist : %f \n", maxDist );
	printf("	min dist : %f \n", minDist );

	//-- 过滤匹配点,保留好的匹配点(这里采用的标准:distance<2*minDist)
	vector< DMatch > goodMatches;
	for( int i = 0; i < descriptors_1.rows; i++ )
	{
	if( allMatches[i].distance < 2*minDist )
	goodMatches.push_back( allMatches[i]); 
	}
	cout<<"number of matches after filtering: "<(), 
	DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS //不显示未匹配的点
	); 
	imshow("matching result", matchImg );
	//-- 
输出匹配点的对应关系 for( int i = 0; i < goodMatches.size(); i++ ) printf( " good match %d: keypoints_1 [%d] -- keypoints_2 [%d]\n", i, goodMatches[i].queryIdx, goodMatches[i].trainIdx ); waitKey(0); return 0; }

实验结果:



从第二个实验结果可以看出,经过过滤之后特征点数目从49减少到33,匹配的准确度有所上升。当然也可以使用SIFT算子进行上述两种匹配实验,只需要将SurfFeatureDetector换成SiftFeatureDetector,将SurfDescriptorExtractor换成SiftDescriptorExtractor即可。


拓展

在FLANN匹配法的基础上,还可以进一步利用透视变换和空间映射找出已知物体(目标检测),具体来说就是利用findHomography函数利用匹配的关键点找出相应的变换,再利用perspectiveTransform函数映射点群。具体可以参考这篇文章:OpenCV中feature2D学习——SIFT和SURF算法实现目标检测。

声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。TEL:177 7030 7066 E-MAIL:11247931@qq.com

文档

OpenCV中feature2D学习SIFT和SURF算子实现特征点提取与匹配

OpenCV中feature2D学习SIFT和SURF算子实现特征点提取与匹配:概述 之前的文章SURF和SIFT算子实现特征点检测简单地讲了利用SIFT和SURF算子检测特征点,在检测的基础上可以使用SIFT和SURF算子对特征点进行特征提取并使用匹配函数进行特征点的匹配。具体实现是首先采用SurfFeatureDetector检测特征点,再使用Surf
推荐度:
标签: 特征 学习 提取
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top