最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
当前位置: 首页 - 科技 - 知识百科 - 正文

MysqlorMongodbLBS快速实现方案

来源:懂视网 责编:小采 时间:2020-11-09 15:16:59
文档

MysqlorMongodbLBS快速实现方案

MysqlorMongodbLBS快速实现方案:前两篇文章: 查找附近的xxx 球面距离以及Geohash方案探讨 (http://www.wubiao.info/372) 微信、陌陌 架构方案分析 (http://www.wubiao.info/401) 探讨了,LBS查找附近的XXX;其中包括了,Mysql自定义存储函数方案,以及通过GeoHash、red
推荐度:
导读MysqlorMongodbLBS快速实现方案:前两篇文章: 查找附近的xxx 球面距离以及Geohash方案探讨 (http://www.wubiao.info/372) 微信、陌陌 架构方案分析 (http://www.wubiao.info/401) 探讨了,LBS查找附近的XXX;其中包括了,Mysql自定义存储函数方案,以及通过GeoHash、red

前两篇文章: 查找附近的xxx 球面距离以及Geohash方案探讨 (http://www.wubiao.info/372) 微信、陌陌 架构方案分析 (http://www.wubiao.info/401) 探讨了,LBS查找附近的XXX;其中包括了,Mysql自定义存储函数方案,以及通过GeoHash、redis自建索引方案

前两篇文章:

查找附近的xxx 球面距离以及Geohash方案探讨 (http://www.wubiao.info/372)

微信、陌陌 架构方案分析 (http://www.wubiao.info/401)

探讨了,LBS查找附近的XXX;其中包括了,Mysql自定义存储函数方案,以及通过GeoHash、redis自建索引方案。

============================================================================================

今天分享两种,利用GeoHash封装成内置数据库函数的简易方案;

A:Mysql 内置函数方案,适合于已有业务,新增加LBS功能,增加经纬度字段方可,避免数据迁移

B:Mongodb 内置函数方案,适合中小型应用,快速实现LBS功能,性能优于A(推荐)

============================================================================================

方案A: (MySQL Spatial)

1、先简历一张表:(MySQL 5.0 以上 仅支持 MyISAM 引擎)

1

2

3

4

5

6

7

8

9

CREATETABLEaddress (

addressCHAR(80)NOTNULL,

address_loc POINT NOTNULL,

PRIMARYKEY(address)

);

空间索引:

1

ALTERTABLEaddress ADDSPATIALINDEX(address_loc);

插入数据:(注:此处Point(纬度,经度) 标准写法)

1

2

3

INSERTINTOaddress VALUES('Foobar street 12', GeomFromText('POINT(30.620076 104.067221)'));

INSERTINTOaddress VALUES('Foobar street 13', GeomFromText('POINT(31.720076 105.167221)'));

查询: 查找(30.620076,104.067221)附近 10 公里

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

SELECT *

FROM address

WHERE MBRContains

(

LineString

(

Point

(

30.620076 + 10 / ( 111.1 / COS(RADIANS(104.067221))),

104.067221 + 10 / 111.1

),

Point

(

30.620076 - 10 / ( 111.1 / COS(RADIANS(104.067221))),

104.067221 - 10 / 111.1

)

),

address_loc

)

============================================================================================

方案B:

1、先建立一张简单的表user,两条数据如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

{

"_id": ObjectId("518b1f1a83ba88ca60000001"),

"account":"simplephp1@163.com",

"gps": [

104.067221,

30.620076

]

}

{

"_id": ObjectId("518b1dae83ba88d660000000"),

"account":"simplephp6@163.com",

"gps": [

104.07958,

30.653936

]

}

其中,gps为二维数组,分别为经度,纬度

(注:此处必须按照(经度,纬度)顺序存储。我们平时表示经纬度,都是(纬度,精度),此处这种方式有木有很亲民)

2、使用之前,先建立二维索引

//建立索引 最大范围在经度-180~180

1

db.user.ensureIndex({"gps":"2d"},{"min":-180,"max":180})

//删除索引

1

db.user.dropIndex({"gps":"2d"})

3、Mongodb有两中方式可以查找附近的XXX;其中方案2)会返回距离(推荐)

1)标准查询,为地球经纬度查询内置;参数一为查询条件利用$near查找附近,参数二$maxDistance为经纬弧度(1° latitude = 111.12 kilometers)即 1/111.12,表示查找附近一公里。

1

db.user.find({ gps :{ $near : [104.065847, 30.657554] , $maxDistance : 1/111.12} })

2)执行命名方式,模拟成一个圆球;参数一指定geoNear方式和表名;参数二坐标,参数三是否为球形,参数四弧度(弧度=弧长/半径 一千米的弧度1000/6378000),参数五指定球形半径(地球半径)

1

db.runCommand({geoNear:'user', near:[104.065847, 30.657554], spherical:true, maxDistance:1000/6378000, distanceMultiplier:6378000});

声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。TEL:177 7030 7066 E-MAIL:11247931@qq.com

文档

MysqlorMongodbLBS快速实现方案

MysqlorMongodbLBS快速实现方案:前两篇文章: 查找附近的xxx 球面距离以及Geohash方案探讨 (http://www.wubiao.info/372) 微信、陌陌 架构方案分析 (http://www.wubiao.info/401) 探讨了,LBS查找附近的XXX;其中包括了,Mysql自定义存储函数方案,以及通过GeoHash、red
推荐度:
标签: 快速 实现 lbs
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top