不是非负整数的数都没有阶乘的定义。
阶乘是基斯顿·卡曼(Christian Kramp,1760~1826)于 1808 年发明的运算符号,是数学术语。
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
相关信息:
一直以来,由于阶乘定义的不科学,导致以后的阶乘拓展以后存在一些理解上得困扰,和数理逻辑的不顺。
阶乘从正整数一直拓展到复数。传统的定义不明朗。所以必须科学再定义它的概念,真正严谨的阶乘定义应该为:对于数n,所有绝对值小于或等于n的同余数之积。
负数的阶乘等于多少
阶乘的定义域不包括负数所以负数没有阶乘运算。
一般来说,定义一种新运算是为了某种需要,但到现在还没有什么数学的分支学科需要定义负数的阶乘,因此现在还没有这种算法,也不需要这种算法
阶乘是指从1到n的连续自然数相乘的积。符号为:n!阶乘在复平面的解析延拓是伽玛函数,定义域是复平面除去负整数的点。
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。TEL:177 7030 7066 E-MAIL:11247931@qq.com