均值不等式一般形式的证明
来源:懂视网
责编:小OO
时间:2023-09-10 01:56:47
均值不等式一般形式的证明
均值不等式一般形式:a>0,b>0,(a十b)/2≥根号ab,当且仅当a=b时取等号。证明方法一(作差比较法)(a十b)/2一√ab=(a+b-2√ab)/2=(√a一√b)^2/2≥0。所以(a十b)/2≥√ab。方法二(利用分析法)欲证基本不等式,须证a^2十b^2十2ab≥4ab,即证a^2十b^2一2ab≥0,即只需要(a一b)^2≥0,这显然成立。所以基本不等式成立。
导读均值不等式一般形式:a>0,b>0,(a十b)/2≥根号ab,当且仅当a=b时取等号。证明方法一(作差比较法)(a十b)/2一√ab=(a+b-2√ab)/2=(√a一√b)^2/2≥0。所以(a十b)/2≥√ab。方法二(利用分析法)欲证基本不等式,须证a^2十b^2十2ab≥4ab,即证a^2十b^2一2ab≥0,即只需要(a一b)^2≥0,这显然成立。所以基本不等式成立。
均值不等式一般形式:a>0,b>0,(a十b)/2≥根号ab,当且仅当a=b时取等号。证明方法一(作差比较法)(a十b)/2一√ab=(a+b-2√ab)/2=(√a一√b)^2/2≥0。所以(a十b)/2≥√ab。
方法二(利用分析法)欲证基本不等式,须证a^2十b^2十2ab≥4ab,即证a^2十b^2一2ab≥0,即只需要(a一b)^2≥0,这显然成立。所以基本不等式成立
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。TEL:177 7030 7066 E-MAIL:11247931@qq.com
均值不等式一般形式的证明
均值不等式一般形式:a>0,b>0,(a十b)/2≥根号ab,当且仅当a=b时取等号。证明方法一(作差比较法)(a十b)/2一√ab=(a+b-2√ab)/2=(√a一√b)^2/2≥0。所以(a十b)/2≥√ab。方法二(利用分析法)欲证基本不等式,须证a^2十b^2十2ab≥4ab,即证a^2十b^2一2ab≥0,即只需要(a一b)^2≥0,这显然成立。所以基本不等式成立。